
Foundations of Deep Learning
for the Social Sciences

Christopher Urban

University of North Carolina at Chapel Hill

Review of Today’s Learning Outcomes

You will learn:

▶ How to fit structural equation models using backpropagation
and stochastic gradient-based optimization

▶ The defintion of the autoencoder and applications
▶ The basics of non-amortized and amortized variational

inference
▶ How to use variational methods to fit complex latent factor

models

Why Latent Variable Models?

Social scientists want to reduce the dimensionality of data to make it easier to
understand.

In my field (psychology), researchers often use questionnaires to indirectly
measure variables like

▶ abilities;
▶ personality characteristics; and
▶ mental illnesses.

Some categorical questions from an online Big-Five Personality Factors
questionnaire.

Condensing into latent constructs facilitates understanding.

Framework 1: Structural Equation Modeling
The basic idea is that we have two parts:

1. a measurement model that describes how we’re using the observed
variables to measure the latent constructs; and

2. a structural model that describes the relationships between the latent
constructs.

Our goal is for the model to accurately reproduce the covariance matrix of the
observed data.

Can test a variety of complicated hypotheses (often shown as schematic
diagrams).

Example 1: Linear Factor Analysis

We assume the continuous observed variables y are generated by a
smaller set of continuous latent variables x:

y = Λx + ε,

where Λ is the loadings matrix and ε is a vector of residuals.

Similar to linear regression, but now the predictors are latent.

The loadings matrix is a tool for interpreting the factors!

Framework 2: Item Response Theory
Item response theory (IRT) is a family of models for categorical observed
data with underlying continuous latent variables.

IRT provides useful information about question properties like difficulty
(i.e., how hard is this question?) and discrimination (i.e., how easily can
we tell respondents apart?).

−3 −2 −1 1 2 3

1

z

f (z)α = 0
α = −1
α = 1

Item response curves with different difficulty parameters.

Fitting IRT models is computationally challenging.

Example 2: Multidimensional 2-Parameter Logistic Model

The M2PL is a model for binary observed data.

The M2PL says that the observed data are generated as follows:

yj | x ∼ Bernoulli(yj | σ(β⊤x + αj)),

where yj is the response to item j , β is a loadings vector, and αj is
an intercept for item j .

This is just a logistic regression of the items on the latent factors.

Similar to linear factor analysis, we interpret the factors using the
loadings matrix.

Shortcomings of the Traditional Approaches

Over the past decade, lots of large-scale item response data has
been (digitally) collected:

▶ Assessment data from e-learning technologies

▶ Mental health symptom data from surveys and clinics

▶ Customer preference data from retailers and streaming services

▶ Personality data from online inventories

Traditional latent variable models aren’t always fast or flexible
enough to model these kinds of data!

Computational Challenges with Modern Data Sets

Lots of people

z1

z2z3

z4

z5

z6

z7 z8

z9

z10

Lots of latent and observed variables

Modeling Challenges with Modern Data Sets

▶ Non-normal latent variables

−1

0

1

2

3

4−1

0

1

2

3

4
0

0.2

0.4

p(z1) p(z2)

z1 z2

0

0.1

0.2

p(z1, z2)

▶ Non-linear associations between LVs and OVs

▶ Missing data

Title of this block
▶ Bloop

Solution: Deep Learning

The deep learning tools we learned about yesterday provide
building blocks to solve a few of these challenges.

▶ Lots of people and observed variables?
→ Backpropagation and stochastic gradient methods!

▶ Non-linear associations between variables?
→ Neural networks!

We’ll learn about some new deep learning tools today that let us
handle latent variable models with complicated log-likelihoods.

Review of Estimation for Structural Equation Models

The model has two parts:

y = Λx + ε Measurement model
x = B0x + ξ Structural model

All the estimable parameters can be collected in a big vector:

δ = (vec(Λ)⊤, vech(Θ)⊤, vech(Ψ)⊤, vec(B0)⊤)⊤,

with Θ the covariance matrix of ε and Ψ the covariance matrix of x.

Letting δ = δ(θ) where θ are the free parameters, the model-implied
covariance matrix is:

Σ(θ) = Λ(I − B0)−1Ψ(I − B0)−⊤Λ⊤ + Θ.

We want this to look like observed covariance matrix S.

SEM Fitting Functions
Our SEM loss function should measure the discrepancy between Σ(θ)
and S.

Then, when we minimize it, we’re choosing the Σ(θ) that best fits the
observed covariance structure.

One example is the maximum likelihood fitting function, which follows
from the assumption that y ∼ N (y | 0, Σ(θ)):

FML(θ) = log|Σ(θ)| + tr
[
SΣ−1(θ)

]
.

We can also use different fitting functions, such as the generalized least
squares (GLS) function:

FGLS(θ) = [vech(S) − vech(Σ(θ))]⊤W[vech(S) − vech(Σ(θ))],

where different choices for the weight matrix W produce different
estimators.

SEM and Deep Learning-Based Optimization
It’s very straightforward to combine SEM with the deep learning
concepts we’ve already learned.

If we compute the fitting function using a deep learning framework with
automatic differentiation (e.g., PyTorch, Tensorflow, etc.), we can
backpropagate and optimize the fitting function using stochastic gradient
methods.

It’s also really easy to add extensions like regularization.

Here’s a pretty picture of the computation graph for FML(θ).

Learning Outcomes Checkpoint

▶ We’ve discussed fitting SEMs using backpropagation and
stochastic gradient-based optimization.

▶ Now we’ll move on to fitting more challenging latent variable
models, beginning with an introduction to autoencoders.

Review of Estimation for Item Response Theory Models

Fitting IRT models with a lot of factors is computationally intensive.

General latent factor models (including IRT models) look like this:

x ∼ pξ(x) latent variable prior
y | x ∼ pθ(y | x) measurement model

The marginal log-likelihood of the observed data looks like this:

log L(δ | Y) =
∑N

i=1

[∫
pθ(yi | x)pξ(x)dx

]
,

where δ = (θ⊤, ξ⊤)⊤ collects all unknown parameters.

There’s no analytic simplification. We need to approximate the N
integrals over RD numerically!

IRT and Deep Learning-Based Optimization

Fitting IRT models in deep learning frameworks is less
straightforward than for SEM as we no longer have a nice
closed-form log-likelihood.

To fit IRT models, we’ll introduce some new tools from deep
learning-based approximate inference to approximate the marginal
log-likelihood.

Working in the approximate inference framework will also let us
introduce flexible extensions of IRT models — e.g., models with
neural net-based measurement models and with flexible latent prior
distributions.

We’ll start by introducing autoencoders.

Autoencoders

Autoencoders (AEs) are neural nets that copy their input to
their output.

y1

y2

y3

y4

y5

y6

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

x1

x2

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6

L = ∥x − x̂∥2
2

Input
layer Encoder

hidden
layer

Composite
variable

layer

Decoder
hidden
layer

Output
layer

Autoencoder Uses

AEs are primarily used for dimensionality reduction.
▶ Linear AE weights span the same subspace as PCA loadings

(Baldi and Hornik, 1988).
▶ Full AEs perform a nonlinear generalization of PCA.

This reduces the size of predictive models applied to the data and
is useful for clustering.

Unfortunately, in their most basic form, AEs are not generative
models – that is, they don’t model the data generating process,
and therefore can’t simulated realistic fake data.

http://www.vision.jhu.edu/teaching/learning/deeplearning18/assets/Baldi_Hornik-89.pdf

Learning Outcomes Checkpoint

▶ We’ve discussed why fitting IRT models is hard and
introduced autoencoders.

▶ We’ll next get into the intuition behind variational
autoencoders, and explain the difference between amortized
and non-amortized variational inference.

Variational Autoencoders — Intuition

Similar idea as autoencoder, except the bottleneck has
latent variables with a distribution we choose.

y1

y2

y3

y4

y5

y6

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

x1

x2

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6

Input
layer Encoder

hidden
layer

Latent
variable

layer

Decoder
hidden
layer

Output
layer

y1

y2

y3

y4

y5

y6

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

x1

x2

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6Sample

=

y1

y2

y3

y4

y5

y6

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

x1

x2

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

ŷ1

ŷ2

ŷ3

ŷ4

ŷ5

ŷ6Sample

=

This is just nonlinear factor analysis:

x = g(z) + ε,

where g(·) is approximated by a neural net.

The Connection Between VAE and Psychometrics

What if we change g(·) to be something other than a neural net?

If g(·) is linear, we get linear factor analysis:

y = g(x) + ε

= Λx + ϵ.

If g(·) is linear with an inverse logistic link, we get IRT’s M2PL:

p = g(x) = σ(Bx + α)
pθ(y | x) = Bernoulli(y | p).

The right side looks a lot like the latent variable models we’re used to!

x1

x2

x3

x4

x5

x6

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

z1

z2

x̂1

x̂2

x̂3

x̂4

x̂5

x̂6

Sample

What Makes VAEs Variational?

The VAE defines the following generative model:

x ∼ pξ(x) latent variable prior
y | x ∼ pθ(y | x) = pθ(y | η), measurement model

where η = NeuralNet(x).

Unfortunately, the log-likelihood for this model is intractable, so we can’t
directly use it as our loss function.

Instead, we’re going to use an approach called variational inference to write a
lower bound on the log-likelihood, which we’ll use as our loss instead.

Variational inference introduces an approximation to the exact latent variable
posterior distribution that we can sample from to impute factor scores during
fitting. It’s typically an isotropic Gaussian:

qϕ(y)(x) = N (µ(y), σ2(y)I).

Amortized vs. Non-Amortized Variational Inference

In regular variational inference, we have a separate variatonal
parameters ϕ(y) = (µ(y)⊤, σ(y)⊤)⊤ for each person.

This becomes very computationally intensive for large sample sizes.

In amortized variational inferece, we introduce a neural net
inference model to map from the item responses to the variational
parameter values:

µ, log σ = NeuralNetϕ(y).

Now we share the neural net parameters ϕ across all people,
making inference computationally efficient.

Learning Outcomes Checkpoint

▶ We’ve discussed the intuition behind variational autoencoders
and the difference between amortized and non-amortized
variational inference.

▶ Now we’ll get into fitting VAEs.

The Variational Lower Bound
We can derive a lower bound on the observed variable likelihood as follows:

log p(y) = log
∫

p(y | x)p(x)dx

= log
∫

q(x | y)
p(y | x)p(x)

q(x | y)
dx Multiply by a constant

≥
∫

q(x | y) log
p(y | x)p(x)

q(x | y)
dx Jensen’s inequality

=
∫

q(x | y) log p(y | x)dx −
∫

q(x | y) log
q(x | y)

p(x)
dx Logarithms

= Ex∼q(x|y)
[
p(y | x)

]︸ ︷︷ ︸
expected conditional likelihood

− DKL
[
q(x | y)∥p(x)

]︸ ︷︷ ︸
Kullback-Leibler divergence

.

where the last line is called the evidence lower bound (ELBO).

ELBO is our loss function. We can show that:

log p(y) − ELBO = DKL[q(x | y) | p(x | y)],

i.e., the tightness of ELBO depends on the accuracy of our posterior approximation.

What’s Actually Happening in VAEs

y1 y2 y3 y4 y5 y6

h(1)
1 h(1)

2 h(1)
3 h(1)

4

µ1 µ2 log σ1 log σ2

Sample xi from
N

(
µ, σ2I

)

x1 x2

h(2)
1 h(2)

2 h(2)
3 h(2)

4

p1 p2 p3 p4 p5 p6

DKL
[
N (µ, σ2I)∥N (0, I)

]
︸ ︷︷ ︸

Kullback-Leibler divergence

Ex∼N (µ,σ2I)
[∏6

j=1 Bernoulli(pj)
]

︸ ︷︷ ︸
expected conditional likelihood

Input
layer

Encoder
hidden
layer

Predicted
latent variable

parameters

Latent
variable

layer

Decoder
hidden
layer

Predicted
observed
variable

parameters

Reparameterization Trick
Derivatives don’t pass through the sampling operation, so we use a
reparameterization trick to make sampling differentiable:

ϵ ∼ N (0, I),
x = µ + σ ⊙ ϵ.

This produces a low variance gradient estimator for the neural net parameters
ϕ, but is tricky to implement with discrete latent variables.

Tightening the Lower Bound via Importance Sampling

We can use importance sampling to tighten the ELBO:

log pδ(y) ≥ Ex1:R

[
log 1

R

R∑
r=1

wr

]
= IW-ELBO

≥ Ex[log w] = ELBO,

where wr = pδ(xr , y)/qϕ(xr | y).

This model is called an importance-weighted autoencoder (IWAE).

As R → ∞:

– The IW-ELBO converges monotonically to the true log-likelihood.

– The approximate posterior converges to the exact posterior.

Burda, Grosse, and Salakhutdinov, (2016). Importance weighted autoencoders.

https://arxiv.org/abs/1509.00519

Signal-to-Noise Vanishing

Can be fixed with a “minor” modification to the inference network
gradient. See my paper for details.

Rainforth et al. (2018). Tighter variational bounds are not necessarily better.

https://link.springer.com/article/10.1007/s11336-021-09748-3
https://arxiv.org/abs/1802.04537

How Does This Work for Fitting IRT Models?
Urban, C. J. & Bauer, D. J. (2021). A deep learning algorithm for high-dimensional
exploratory item factor analysis. Psychometrika. 86 (1), 1-29.

N = 1 000

N = 2 000

N = 5 000

N = 10 000
0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

M
SE

Loadings
Deep Learning
MH-RM

N = 1 000

N = 2 000

N = 5 000

N = 10 000
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

M
SE

Factor Correlations

N = 1 000

N = 2 000

N = 5 000

N = 10 000
0.000

0.005

0.010

0.015

0.020

0.025

M
SE

Intercepts

MSE for Deep Learning vs. MH-RM

N = 1 000

N = 2 000

N = 5 000

N = 10 000
0

200

400

600

800

1000

1200

1400

Fi
tti

ng
 T

im
e

(S
ec

on
ds

)

Fitting Times for Deep Learning vs. MH-RM

Deep Learning
MH-RM

Tons of Extensions!

▶ Longitudinal data — we’d used an RNN inference network

▶ Pretty much any measurement model and/or latent prior

▶ Layers of latent variables

▶ Multilevel / SEM-type models

Normalizing Flows for Latent Density Estimation
We apply a sequence of transformations to some simple base distribution
to transform it into a more complicated distribution.

If the transformations are diffeomorphisms, we can evaluate the final
density using the change of variables formula:

pY (y) =
∣∣∣∣∂f (x)

∂x

∣∣∣∣−1
pX (x).

This can be applied to the latent variable prior!

Software

▶ Tensorsem — fitting SEMs using backprop and stochastic
gradient methods

▶ DeepIRTools — fiitting latent factor models using
importance-weighted amortized variational inference

▶ Pyro and NumPyro — build general probabilistic models in
PyTorch and Jax

▶ Tensorflow Probability — work with probabilistic models in
Tensorflow

https://github.com/vankesteren/tensorsem
https://github.com/vankesteren/tensorsem
https://github.com/cjurban/deepirtools
https://github.com/cjurban/deepirtools
https://pyro.ai/
https://github.com/pyro-ppl/numpyro
https://www.tensorflow.org/probability
https://www.tensorflow.org/probability

Final Checkpoint

▶ We’ve finished discussing fitting VAEs and some extensions.
▶ On to programming!

