
Foundations of Deep Learning
for the Social Sciences

Christopher Urban

University of North Carolina at Chapel Hill

Introducing the Instructor

A short bio:

▶ I’m a final year Ph.D. candidate in Quantitative Psychology at
the University of North Carolina at Chapel Hill

▶ I want to understand and predict human behavior
▶ Currently fascinated by neural networks and deep learning

Contact info:

▶ Website: cjurban.github.io
▶ Email: cjurban@live.unc.edu

https://quantpsych.unc.edu/
https://www.unc.edu/
https://cjurban.github.io/
cjurban.github.io
mailto:cjurban@live.unc.edu
cjurban@live.unc.edu

Introducing the Attendees

Let’s go around and share:

▶ Your name and institution
▶ Your research interests
▶ Preferred statistical software package(s) and/or programming

language(s)
▶ Your reason(s) for enrolling in this workshop
▶ A fun fact about you(?)

Introducing the Workshop

Overarching Goal:
Learn how to use deep learning for predictive and explanatory

modeling of human behavior

Workshop content split into three chunks:

Day 1, morning: Intro and foundational concepts

Day 1, afternoon: Foundational models

Day 2: Connections to psychometrics

First Day Learning Outcomes

In the morning, you will learn:

▶ Some achievements of modern deep learning
▶ The definition of a deep learning model and some connections

to traditional statistical models
▶ The basics of how deep learning models are fitted including

the backpropagation algorithm, automatic differentiation, and
stochastic gradient-based optimization

First Day Learning Outcomes, Continued

In the afternoon, you will learn:

▶ The definition of the multilayer perceptron and applications to
cross-sectional data

▶ The defintion of the recurrent neural network (RNN) and
applications to longitudinal data

▶ Why RNNs struggle with long-term dependencies and
solutions based on gated architectures

▶ The definition of the convolutional neural network and
applications to image data

▶ Universal approximation properties of each model type
▶ The basics of tuning neural network hyperparameters
▶ How to evaluate and compare fitted deep learning models

Second Day Learning Outcomes

You will learn:

▶ How to fit structural equation models using backpropagation
and stochastic gradient-based optimization

▶ The defintion of the autoencoder and applications
▶ The basics of non-amortized and amortized variational

inference
▶ How to use variational methods to fit complex latent factor

models

Learning Outcomes Checkpoint

▶ Let’s briefly discuss the history of deep learning and some
of its recent achievements.

The Rise of Social Data Science: The Data Boom
Over the past 15–20 years, progressively larger scale and more

complex behavioral data has become available:

Social media data Wearable sensor data

Electronic health records Smartphone data

The Rise of Social Data Science: The Methods Boom
Simultaneously, interest has grown in using statistical and machine learning

methods to model these data:

Regularization
▶ For (factor, group, and/or network) structure — Sun et al. (2016), Huang,

Chen, & Weng (2017), Epskamp & Fried (2018), Scharf & Nestler (2019).
▶ For estimation stability in high dimensions — Jacobucci, Grimm, &

McArdle (2016).
▶ For differential item functioning — Belzak & Bauer (2020), Belzak (2021).

https://link.springer.com/article/10.1007/s11336-016-9529-6
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/bmsp.12130
https://bpspsychub.onlinelibrary.wiley.com/doi/abs/10.1111/bmsp.12130
https://pubmed.ncbi.nlm.nih.gov/29595293/
https://www.tandfonline.com/doi/abs/10.1080/10705511.2018.1558060?journalCode=hsem20##:~:text=We%20conclude%20that%20regularization%20is,factor%20rotation%20for%20psychometric%20applications.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937830/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4937830/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7343596/
https://www.proquest.com/openview/3783f03c1b4bce9232fb5f5f85b8ad4c/1?cbl=18750&diss=y&pq-origsite=gscholar

The Rise of Social Data Science: The Methods Boom
Simultaneously, interest has grown in using statistical and machine

learning methods to model these data:

Predictive modeling

▶ As a component of risk detection — e.g.,
for suicide, self harm, manic/depressive
episodes — Yarkoni & Westfall (2017),
Walsh, Ribeiro, & Franklin (2017).

▶ To combat the replication crisis — e.g.,
via cross-validation — Cudeck & Browne
(1983), Koul, Becchio, & Cavallo (2018).

https://pubmed.ncbi.nlm.nih.gov/28841086/
https://journals.sagepub.com/doi/abs/10.1177/2167702617691560
https://www.tandfonline.com/doi/abs/10.1207/s15327906mbr1802_2
https://www.tandfonline.com/doi/abs/10.1207/s15327906mbr1802_2
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6043802/##:~:text=Cross%2Dvalidation%20entails%20a%20set,%2Dobservations%2Dout%E2%80%9D%20analysis.

The Rise of Social Data Science: Thoughts

Important themes:

▶ Larger scale — more people and more variables
▶ More complex — e.g., not-at-random missingness, network

structure, lagged relationships, audiovisual data
▶ Recognition that most relationships are nonlinear
▶ Recognition that models should generalize to new data

To summarize, data and modeling procedures appear to be
catching up with the long-suspected notion that human systems
are complex.

The Rise of Deep Learning

Deep learning (DL) researchers have long been interested in modeling
complex phenomena.

DL overlaps with statistics, but the fields
typically have different goals.

Statistics aims to help people make optimal
decisions given assumptions and data.
▶ Statistical models almost always have

interpretable parameters.

DL is a subfield of artificial intelligence —
i.e., the study of autonomous agents.
▶ Models don’t need interpretable

parameters — just need to interact
with the environment effectively.

A Brief History of Deep Learning: The Early Years

1940s–1960s. Initial work
inspired by biology — goal was
to build models of neurons.
▶ McCulloch & Pitts (1943),

Rosenblatt (1958)

1980s–1990s. Popularization of
backpropagation-based model fitting.
▶ Rumelhart, Hinton, & Williams (1986).

Models developed for images and sequences.
▶ LeCun et al. (1989), Hochreiter &

Schmidhuber (1997).

Universal approximation theorems proved.
▶ Cybenko (1989), Siegelmann &

Sontag (1992).

https://link.springer.com/article/10.1007/BF02478259
https://pubmed.ncbi.nlm.nih.gov/13602029/
https://www.nature.com/articles/323533a0
https://ieeexplore.ieee.org/document/6795724
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory
https://direct.mit.edu/neco/article-abstract/9/8/1735/6109/Long-Short-Term-Memory
https://link.springer.com/article/10.1007/BF02551274
https://www.sciencedirect.com/science/article/pii/S0022000085710136
https://www.sciencedirect.com/science/article/pii/S0022000085710136

A Brief History of Deep Learning: Later Years

2006–2011. Some of the first really
“deep” models for computer vision.
▶ Hinton (2007), Ranzato et al.

(2007), Bengio et al. (2007).

2012. The highly influential
AlexNet model for image recognition
was published.
▶ Krizhevsky, Sutskever, &

Hinton (2007).
2014–Present The generative
modeling boom. Development of
generative adversarial networks,
variational autoencoders, and more.
▶ Goodfellow et al. (2014),

Kingma & Welling (2014),
Rezende, Mohamed, &
Wierstra (2014).

https://pubmed.ncbi.nlm.nih.gov/17921042/
https://ieeexplore.ieee.org/document/4270182
https://ieeexplore.ieee.org/document/4270182
https://papers.nips.cc/paper/2006/hash/5da713a690c067105aeb2fae32403405-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://papers.nips.cc/paper/2014/hash/5ca3e9b122f61f8f06494c97b1afccf3-Abstract.html
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1401.4082
https://arxiv.org/abs/1401.4082

What Can Deep Learning Do?
DL excels at modeling complex processes:
Game playing. Typically uses a method called reinforcement learning
wherein model learns by playing millions of times.
▶ Examples: AlphaGo for Go, deep-Q-nets for Atari 2600.

Weather forecasting. Based on generating fake radar data.
▶ Example: Nowcasting precipitation.

https://www.deepmind.com/research/highlighted-research/alphago
https://www.nature.com/articles/nature14236
https://www.nature.com/articles/s41586-021-03854-z

What Else Can Deep Learning Do?
Predict protein structure. Based on an attention mechanism that pays
attention to most important parts of data.
▶ Example: AlphaFold.

Natural language processing. Typically based on models for sequences.
▶ Examples: Google Translate, GPT-3 for generating realistic text.

https://www.deepmind.com/research/highlighted-research/alphafold
https://en.wikipedia.org/wiki/Google_Neural_Machine_Translation
https://en.wikipedia.org/wiki/GPT-3

And Last But Not Least, Computer Vision

▶ Vehicle safety and self-driving — e.g., Tesla, Waymo

▶ Facial recognition — e.g., cell phones, mass surveillance

▶ Reverse image search — e.g., Google Lens

▶ Generating realistic fake images and movies — e.g.,
Deepfakes, DALL-E, Stable Diffusion

https://www.tesla.com/AI
https://sites.google.com/view/waymo-learn-to-drive/
https://machinelearning.apple.com/research/face-detection
https://en.wikipedia.org/wiki/Google_Lens
https://en.wikipedia.org/wiki/Deepfake
https://en.wikipedia.org/wiki/DALL-E
https://stability.ai/blog/stable-diffusion-public-release

Some Natural Questions

Why hasn’t DL been more widely adopted in the social
sciences?
▶ Not enough data?
▶ Available data doesn’t have the right structure?
▶ Interpretation difficulties?
▶ Limited methodological training available?

Can we augment traditional statistical models used in the
social sciences with DL and retain the benefits of both?
▶ More on this tomorrow!

Learning Outcomes Checkpoint

▶ We briefly discussed the history of deep learning and some
of its recent achievements.

▶ Now, let’s define what it means for a model to be a deep
learning model.

Defining “Deep Learning Model”

Two different (but related) definitions typically used.

1. Computational definition. The model passes the predictors
through a sequence of processing steps to predict the outcome.

▶ E.g., linear regression models pass the predictors through one
processing step — multiply by weights and add intercepts

▶ Deep learning models pass the predictors through multiple
such processing steps

2. Probabilistic definition. The model assumes that the data were
generated by building complicated concepts from simple concepts.

▶ E.g., in images, objects made from parts, parts made from
edges, edges made from pixels

▶ E.g., in social sciences, districts made from schools, schools
made from classrooms, classrooms made from students

The Computational Definition: Machine Learning Models
Machine learning models look like this:

ŷ = fθ(x)

where θ are parameters.

Example 1: Linear regression model

ŷ = w⊤x + b

where w are weights and b is an intercept.

Example 2: Logistic regression model

ŷ = σ(w⊤x + b)

where σ(z) = 1/(1 + exp[−z]) is the inverse logistic link function.

Logistic Regression Schematic Diagram

x1

x2

x3

x4

x5

ŷ

Predictors

Outcome

x

ŷ = σ(w⊤x + b)

The Computational Definition: Deep Learning Models

Deep learning models look like this:

ŷ = f (L)
θL

f (L−1)
θL−1

 . . . f (3)
θ3

(
f (2)
θ2

(
f (1)
θ1

(x)
))

. . .

where θ1, θ2, θ3, . . . , θL−1, θL are parameters.

Each f (l)
θl

(·) is called a layer.

Deep Learning Model Schematic Diagram

x1

x2

x3

x4

x5

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

h(1)
6

h(1)
7

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

h(2)
6

h(2)
7

ŷ

Input layer

Hidden layer 1 Hidden layer 2

Output layer

x

h(1) = f (1)
θ1

(x) h(2) = f (2)
θ2

(h(1))

ŷ = f (3)
θ3

(h(2))

Deep Learning Model Example: Multilayer Perceptron
One of the most basic DL models, the multilayer perceptron (MLP), is
just a “stack” of generalized linear models.

Example 3: Multilayer perceptron

h(l) = f (l)(Wlh(l−1) + bl), l = 1, . . . , L,

where h(0) = x, h(L) = ŷ , Wl is a weight matrix, bl are intercepts, and
f (l)(·) is an activation (i.e., inverse link) function.

−3 −2 −1 1 2 3

1

z

σ(z)

Sigmoid activation function:
σ(z) = 1/(1 + exp [−z])

This is just the inverse logistic link!

−3 −2 −1 1 2 3

1

2

3

z

f (z)

ReLU activation function:
f (z) = max(z , 0)

Multilayer Perceptron Schematic Diagram

We might use the model below to predict a binary outcome.

I’ve expanded the schematic to show additional internal
computations.

x1

x2

x3

x4

x5

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
5

a(1)
6

a(1)
7

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

h(1)
6

h(1)
7

a(2)
1

a(2)
2

a(2)
3

a(2)
4

a(2)
5

a(2)
6

a(2)
7

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

h(2)
6

h(2)
7

a(3) ŷ

x

a(1) = W1x + b1 h(1) = f (1)(a(1)) a(2) = W2h(2) + b2 h(2) = f (2)(a(2))

a(3) = w⊤
3 h(2) + b3 ŷ = σ(a(3))

The Probabilistic Definition

Rather than processing
the data in a sequence of
steps, the model includes
multiple layers of latent
variables.

This approach aims to
capture progressively
more and more
complicated concepts as
the layers progress.

This is a less commonly
used definition — and
often, models are deep in
both senses!

Learning Outcomes Checkpoint

▶ We’ve defined what it means for a model to be a deep
learning model.

▶ Now let’s discuss how to fit deep learning models. You
will get a basic understanding of:1
▶ how the backpropagation algorithm works; and
▶ how stochastic gradient methods work.

1Some of these slides will look fairly math-y. To reassure you — my goal is to
describe these topics to you intuitively and to give you the equations in
case you want to go back through these slides yourself.

How Do We Estimate DL Model Parameters?

1. Pick a loss function L — intuitively, this measures how
accurate our model is
▶ Squared error loss L = 1

2 (y − ŷ)2

▶ Logistic loss L = −[y log(ŷ) + (1 − y) log(1 − ŷ)]

2. Find the derivative ∂L
∂θ — intuitively, this tells us how to

change the parameters to make the model more accurate

3. Update the parameters using stochastic gradient method

DL models can be huge and complex,
so researchers use automatic procedures
to find derivatives and stochastic
gradient methods that work well in a
variety of settings.

−1 0
1

2
3

0

20

5

10

15

w

b

L

Understanding DL Concepts Through Logistic Regression
We will work through fitting a logistic regression model using a deep
learning approach.

We will begin with the univariate case, then move on to the multivariate
case.

The univariate logistic regression model looks like this:

x ŷ

Predictors Outcome

x ŷ = σ(wx + b)

For example, x ≥ 0 might be the number of hours slept last night, and
y ∈ {0, 1} might be whether one experiences a depressive episode the
following day.

Logistic Regression Loss Function

The logistic regression loss function is the logistic loss:

L = −[y log(ŷ) + (1 − y) log(1 − ŷ)]

=
{

− log(ŷ) if y = 1
− log(1 − ŷ) if y = 0.

The intuition here is that we want to predict the probability of y
being 1 or 0:

Pr(y = 1 | x) = ŷ = σ(wx + b),
Pr(y = 0 | x) = 1 − ŷ = 1 − σ(wx + b).

When y = 1, we want to increase Pr(y = 1 | x); when y = 0, we
want to increase Pr(y = 0 | x).

Minimizing the Loss by Taking Derivatives
To fit the model, we want the value of θ = (w , b) that minimizes the loss
L — intuitively, this produces the most accurate model.

To do this, we will need the derivative ∂L
∂θ = (∂L

∂w , ∂L
∂b).

Recall (maybe): The derivative evaluated at a point x = x0 is the best
linear approximation to the function at x0; it tells us how fast the
function is changing at x0.

−4 −3 −2 −1 1 2

1

2

x

y
f (x)

df
dx

∣∣
x=0

df
dx

∣∣
x=1.5

We’ll first compute the derivatives analytically, then show how to
compute them using an efficient algorithm called backpropagation.

A Couple of Calculus Facts

To get analytic derivatives for logistic regression, we need the
following facts from calculus class.

Chain rule:

df (g(x))
dx = df

dg
dg
dx .

Sigmoid derivative:

dσ(x)
dx = σ(x)(1 − σ(x)).

Analytic Derivatives for Logistic Regression
The univariate logistic regression loss written in full is:

L = −[y log(σ(wx + b)) + (1 − y) log(1 − σ(wx + b))].

This is how you would compute ∂L
∂w in calculus class:

∂L
∂w = − ∂

∂w [y log(σ(wx + b)) + (1 − y) log(1 − σ(wx + b))]

= − y 1
σ(wx + b)σ(wx + b)(1 − σ(wx + b))x

− (1 − y) 1
1 − σ(wx + b)σ(wx + b)(1 − σ(wx + b))x

= − yx(1 − σ(wx + b)) − (1 − y)xσ(wx + b).

We can compute ∂L
∂b similarly:

∂L
∂b = −y(1 − σ(wx + b)) − (1 − y)σ(wx + b).

Analytic derivatives can be computationally inefficient due to the presence of
repeated expressions (here, σ(wx + b)).

Analytic Derivatives for Logistic Regression
Instead of writing out the full analytic derivatives, we can write things
more elegantly using the chain rule.

Computing the loss:

z = wx + b
ŷ = σ(z)
L = −[y log(ŷ) + (1 − y) log(1 − ŷ)]

Computing the derivatives:

∂L
∂ŷ = −y

ŷ − 1 − y
1 − ŷ

∂L
∂z = ∂L

∂ŷ σ(z)(1 − σ(z))

∂L
∂w = ∂L

∂z x

∂L
∂b = ∂L

∂z

If we compute the value of ∂L
∂z once, we can store it and reuse it to

calculate both ∂L
∂w and ∂L

∂b , eliminating repeated expressions.
This is the basic idea of backpropagation!

Backpropagation: It’s About Computation Graphs
Backpropagation relies on the idea of a computation graph.

Basic idea: Computation graphs are directed acyclic graphs (DAGs)
whose nodes represent values and whose edges represent operations.

For logistic regression, the computation graph looks like this:

x

w

b

z ŷ

y

L

Compute loss = forward pass

Compute derivatives = backward pass

The Forward Pass: Logistic Regression

Recall that x is number of hours slept last night and y is whether one
experiences a depressive episode the following day.

Given specific values of x , w , and b, backpropagation starts by making a
forward pass through the computation graph to compute the loss value.

x
x = 6

w
w = −0.5

b
b = 3

z = wx + b
z = 0

ŷ = σ(z)
ŷ = 0.5

y
y = 1

L = − [y log(ŷ)
+ (1 − y) log(1 − ŷ)]

L = 0.69

Compute loss = forward pass

The Backward Pass: Logistic Regression

Backpropagation then makes a backward pass — i.e., it backpropagates
— through the computation graph to compute ∂L

∂w and ∂L
∂b .

∂L
∂x = N/A

∂L
∂w = ∂L

∂z x
∂L
∂w = −3

∂L
∂b = ∂L

∂z
∂L
∂b = −0.5

∂L
∂z = ∂L

∂ŷ σ(z)(1 − σ(z))
∂L
∂z = −0.5

∂L
∂ŷ = − y

ŷ − 1−y
1−ŷ

∂L
∂ŷ = −2

∂L
∂y = N/A

∂L
∂L = 1

Compute derivatives = backward pass

You can get a feel for why this is computationally efficient — even though
both ∂L

∂w and ∂L
∂b depend on ∂L

∂z , we only needed to compute it once.

Another Calculus Fact

So far, we’ve only had one arrow coming out of each node.

In many cases, though, we have multiple arrows coming out of
some nodes. This happens all the time in DL. It also happens,
for example, when we add regularization (which we’ll see in a
moment).

To handle this case, we need another calculus fact.

Two-variable chain rule:
d
dx f (g(x), h(x)) = df

dg
dg
dx + df

dh
dh
dx .

Regularized Logistic Regression

x

b

w

z ŷ

y

L

R

Lreg

Computing the loss:

z = wx + b
ŷ = σ(z)
L = −[y log(ŷ) + (1 − y) log(1 − ŷ)]

R = 1
2w2

Lreg = L + λR

Computing the derivatives:

∂Lreg
∂L

= 1

∂Lreg
∂R

= λ

∂Lreg
∂ŷ = ∂Lreg

∂L

[
− y

ŷ − 1 − y
1 − ŷ

]
∂Lreg

∂z = ∂Lreg
∂ŷ σ(z)(1 − σ(z))

∂Lreg
∂w = ∂Lreg

∂z x+∂Lreg
∂R

w

∂Lreg
∂b = ∂Lreg

∂z

Multivariate Setting

The concepts are quite similar in the multivariate setting.

The big difference is that we now use multivariable derivatives
called Jacobians.

Similar to the 1D derivative, it’s the best linear approximation to a
multivariable function at a point.

For a multivariable
function f : Rn → Rm, the
Jacobian is a matrix:

∂f
∂x =

∂f1
∂x1

. . . ∂f1
∂xn...

∂fm
∂x1

. . . ∂fm
∂xn

 .

A Calculus Fact for the Multivariate Setting

The chain rule extends to multivariable functions!

Multivariable chain rule. For multivariable functions
f : Rn → Rm and g : Rp → Rn,

∂f
∂x = ∂f

∂g
∂g
∂x

=

∂f1
∂g1

. . . ∂f1
∂gn...

∂fm
∂g1

. . . ∂fm
∂gn

∂g1
∂x1

. . . ∂g1
∂xp...

∂gm
∂x1

. . . ∂gm
∂xp

 .

This is super similar to the single variable chain rule:

df (g(x))
dx = df

dg
dg
dx .

Multivariate Logistic Regression

x

W

b

z ŷ

y

L

Computing the loss:

z = Wx + b
ŷ = σ(z)
L = −[y⊤ log(ŷ) + (1 − y)⊤ log(1 − ŷ)]

Computing the
derivatives:ab

∂L
∂ŷ = − y⊤ diag(ŷ)−1

− (1 − y)⊤ diag(1 − ŷ)−1

∂L
∂z =∂L

∂ŷ diag(σ(z) ⊙ (1 − σ(z)))

∂L
∂W =

(
∂L
∂z

)⊤

x⊤

∂L
∂b =∂L

∂z I

a⊙ is elementwise
multiplication.

bThe shape of ∂L
∂W is the same

as W — this is called the
shape convention.

Automatic Differentiation

Automatic differentiation (AD) is a way of
taking a program that computes a value and
automatically computing derivatives of that
value.

Backpropagation is just AD applied to neural
networks.

AD software works by breaking the original
program down into individual operations called
primitives that each have routines for
computing derivatives.

Original program:
z = Wx + b
ŷ = σ(z)

L = −[y⊤ log(ŷ) + (1 − y)⊤ log(1 − ŷ)]

Primitive Operations:
v1 = Wx
z = v1 + b

v2 = −z
v3 = exp(v2)
v4 = 1 + v3

ŷ = 1/v4

v5 = log(ŷ)
v6 = 1 − ŷ
v7 = log(v6)
v8 = 1 − y

v9 = v⊤
8 v7

v10 = y⊤v5

v11 = v9 + v10

L = −v11

More on this in the programming segment!

Using Our Derivatives

Ok, so now we have derivatives. What do we do with them?

They point in the steepest uphill direction on the loss surface. So, we
follow them backward to go downhill — called gradient descent:

θt+1 = θt − ϵ
∂L
∂θt

,

where ε > 0 is a step size called the learning rate.

−1
0

1
2

3

0

20

5

10

15

w

b

L

The Issue of Big Data
The loss function applies to a single observation. Really, we want to minimize
the cost function, which is the mean loss for the observed data:

C = Epdata [L] ≈ 1
N

N∑
i=1

Li .

So, we really need the derivative of the cost with respect to the parameters:

∂C
∂θ

≈ 1
N

N∑
i=1

∂Li

∂θ
.

However, data sets in many modern
applications can be very large, with
many thousands — or even millions —
of people.

This makes the cost derivative very
slow to compute.

Solution: Stochastic Gradient Descent
Randomly sample a few folks at each iteration to make a mini-batch, then use
the mini-batch to compute the derivative!

This is called stochastic gradient descent (SGD):

∂C
∂θ

≈ 1
B

B∑
i=1

∂Li

∂θ
= g

θt+1 = θt − ϵtg,

where B < N is the mini-batch size.

For SGD, the learning rate εt
has to decay over time to make
sure we get convergence.

SGD can be faster than
gradient descent with big data
sets, but it can be unstable and
tricky to tune.

The Issue of Non-Convexity

Minimizing the loss is tricky with neural nets. Their losses are
non-convex — i.e., there are multiple minima, saddle points,
plateaus, ravines, and many other potentially tricky issues.

Same issue can happen in IRT and SEM — may obtain different
parameter estimates with different starting values.

−4
−2

0
2 −4

−2

0
2

−1

−0.5

0

0.5

1

w
b

L

−4
−2

0
2 −4

−2

0
2

−1

−0.5

0

0.5

1

w
b

L

Practical Tips

▶ Trying multiple random starts helps find the best solution and
assess stability.

▶ Using an adaptive stochastic gradient method like Adam2

(which uses a little bit of curvature information) often requires
less tuning and can successfully navigate difficult loss regions
like saddle points and ravines. Unlike SGD, adaptive
optimizers typically only require a single starting learning rate
value ε.
▶ We’ll be using Adam in our coding examples later.

2Interestingly, while Adam is an extremely popular default optimizer in the deep
learning community, it is not guaranteed to converge in general. A related
optimizer that has convergence guarantees and is implemented in many
deep learning frameworks is called Amsgrad.

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1904.09237

Practical Tips, Continued
▶ It is very important to tune the learning rate. It is common to

do this on a logarithmic scale, e.g., for values in
{1 × 10−2, 1 × 10−3, . . . , 1 × 10−6}.

▶ When manually tuning ε, plotting the cost as a function of
fitting iteration helps diagnose what kind of adjustment we
should make.

Learning Outcomes Checkpoint

▶ We’ve discussed how to fit deep learning models,
including
▶ how the backpropagation algorithm works;
▶ how stochastic gradient methods work; and
▶ some practical fitting tips.

▶ Now, we will move on to learning about basic deep
learning models. We’ll starting with a recap and deeper
dive into multilayer perceptrons.

Recap: Multilayer Perceptrons

Earlier, we discussed the multilayer perceptron (MLP), a basic
deep learning model that can predict outcomes in the
cross-sectional setting.

It’s basically a stack of generalized linear models that, when
composed together, can model very complex nonlinear
relationships between the predictors and the outcomes.

We’ll discuss MLPs conceptually here, then check out some code
examples in a bit.

Multilayer Perceptron Definition

Definition: Multilayer perceptron

h(l) = f (l)(Wlh(l−1) + bl), l = 1, . . . , L,

where h(0) = x, h(L) = ŷ , Wl is a weight matrix, bl are intercepts,
and f (l)(·) is an activation (i.e., inverse link) function.

x1

x2

x3

x4

x5

h(1)
1

h(1)
2

h(1)
3

h(1)
4

h(1)
5

h(1)
6

h(1)
7

h(2)
1

h(2)
2

h(2)
3

h(2)
4

h(2)
5

h(2)
6

h(2)
7

ŷ

Input layer

Hidden layer 1 Hidden layer 2

Output layer

x

h(1) =
f (1)(W1x + b1)

h(2) =
f (2)(W2h(1)+b2)

ŷ =
f (3)(w⊤

3 h(2) +b3)

Transforming the Predictor Space

This link has nice visuals demonstrating how MLPs progressively
transform the predictor space to model complex relationships:

https://colah.github.io/posts/
2014-03-NN-Manifolds-Topology/

https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Picking the Activation Functions
The intermediate activation functions have a ton of possibilities:

−3 −2 −1 1 2 3

1

z

σ(z)

Sigmoid activation function:
σ(z) = 1/(1 + exp [−z])

−3 −2 −1 1 2 3

1

2

3

z

f (z)

ReLU activation function:
f (z) = max(z , 0)

−3 −2 −1 1 2 3

−1

1

z

f (z)

Tanh activation function:
f (z) = (exp[z] − exp[−z])/(exp[z] + exp[−z])

−3 −2 −1 1 2 3
−1

1

2

3

z

f (z)

ELU activation function:
f (z) = max(z , 0) + exp[min(z , 0)] − 1

But, they have optimization difficulties in the flat regions,
especially in models with many layers.

Activation Optimization Issues
When parameters are in flat regions of activation functions, often causes
“gradient vanishing” in deep models.
▶ Because we’re multiplying lots of derivatives, small derivatives get

smaller going back, causing fitting signal to vanish.

Solutions:
▶ Initialize the weights appropriately — this done by default in many

deep learning frameworks.
▶ In very deep models, people often add highways called residual

connections to help information flow between layers.

The Final Activation Function
The choice for the final activation function depends on the kinds of
outcomes we have.
▶ If the outcome is continuous, use an identity activation

function to predict a continuous value:

f (z) = z .

▶ If the outcome is binary (e.g.,
y ∈ {cried today, did not cry today}), use a sigmoid
activation function to predict the probability that y = 1:

σ(z) = 1/(1 + exp[−z]).

▶ If the outcome is nominal with K categories (e.g.,
y ∈ {angry, sad, happy}), use a softmax activation to predict
the probability that y = k, k = 1, . . . , K :

fk(z) = exp(zk)/
K∑

i=1
exp[zi].

MLP Example
To fix ideas, here’s an MLP example from Katie Gates’ and my

deep learning primer for psychologists.

https://psycnet.apa.org/record/2021-31499-001
https://psycnet.apa.org/record/2021-31499-001

Overparameterization and Interpretability
MLPs are overparameterized — they have more parameters than the
number of equations defining the model.

Overparameterization → there are infinitely many sets of parameters that
model the relationship between predictors and outcomes, so noparameter
sets have intrinsic meaning — i.e., they’re not interpretable (see Katie
Gates’ and my deep learning primer for more details).

This is an issue in scientific settings
where interpretable parameters are
desired, but it’s less of an issue for
predictive modeling.

But, see this book for methods to
explain black-box models:
christophm.github.io/interpretable-
ml-book/

https://psycnet.apa.org/record/2021-31499-001
https://psycnet.apa.org/record/2021-31499-001
https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

Universal Approximation Theorems
Universal approximation theorems (UATs) are mathematical results that show
that MLPs (and sometimes other kinds of neural nets) can approximate any
nonlinear association between predictors and outcomes:

▶ en.wikipedia.org/wiki/Universal approximation theorem

They are often cited as theoretical justification for modeling unknown
relationships with neural nets.

Unfortunately, UATs often make unrealistic assumptions and don’t guarantee
that the true relationship will be captured in practice.

Indeed, in practice with continuous
cross-sectional data, MLPs perform similarly to

alternative models (e.g., support vector
machines, random forests).

In my opinion, main benefit of MLPs is that
they can be used as flexible modeling
components in a variety of settings.

https://en.wikipedia.org/wiki/Universal_approximation_theorem

Learning Outcomes Checkpoint

▶ We’ve just discussed the multilayer perceptron in some
detail.

▶ Now we’ll move on to recurrent neural networks, which
are used to model longitudinal data.

Recurrent Neural Networks
Recurrent neural networks (RNNs) are very useful for predicting
outcomes using longitudinal data.

Intuitively, they’re just MLPs with loops carrying information forward
through time — and we reuse the same MLP at each time point.

RNNs: The Equations

Definition: Recurrent neural network

h(t) = f (Whxx(t) + Whhh(t−1) + bhx), t = 1, . . . , T ,

ŷ (t) = g(Wyhh(t) + byh) t = 1, . . . , T ,

where h(0) = 0, Whx are weights from the predictors to the hidden layer,
Whh are weights from the previous to the current hidden layer, bhx are
intercepts applied to the hidden layer, Wyh are weights from the hidden
layer to the outcome, and byh are intercepts applied to the outcome.

This clearly shows that the current hidden layer values depend on the
previous hidden layer values.

Also, we can see that the same parameters get applied at each time
point. This is called weight sharing and makes RNNs quite
computationally efficient.

Different Kinds of RNNs
RNNs can be one-to-many, many-to-one, and many-to-many.

RNN Example
An RNN example from Katie Gates’ and my deep learning primer

for psychologists.

https://psycnet.apa.org/record/2021-31499-001
https://psycnet.apa.org/record/2021-31499-001

Exploding and Vanishing Derivatives

The simple RNNs we’ve discussed often have optimization issues
due to the hidden layer connections.

To get intuition about why, notice what happens in the recurrence
relation

h(t) = wh(t−1), t = 1, . . . , T .

We have
h(t) = w th(0),

which explodes when |w | > 1 and vanishes when |w | < 1.

A similar process happens in simple RNNs, causing derivatives to
also explode or vanish during backprop. See Lipton, Berkowitz,
and Elkan (2015) in the supplemental materials for a detailed
discussion.

Solution: Gated Architectures

The key idea of gated RNNs is that the model learns to control the
flow of information over time.

In the standard RNN, information just flows freely:3

3Graphics here and on subsequent LSTM slides taken from Olah (2015) in
supplemental materials. His blog is an incredibly clear and intuitive
resource!

Long Short-Term Memory: The Cell State

It’s basically a conveyor belt for information that the model adds
to or subtracts from via gating mechanisms.

Long Short-Term Memory: The Forget Gate

ft is between 0 and 1, so this gate decides what proportion of the
total information in the conveyor belt remains.

Long Short-Term Memory: The Input Gate

It decides whether we should add or subtract information from the
conveyor belt.

Long Short-Term Memory: The Output Gate

It decides what information from the conveyor belt we should
output to make predictions and pass on to the next time step.

Learning Outcomes Checkpoint

▶ We’ve just discussed recurrent neural networks, which are
used to model longitudinal data.

▶ Our next goal is to understand convolutional neural
networks, which are used to model images (and
sometimes sequences, too).

Convolutional Neural Networks

Convolutional neural networks (CNNs) are best known as models
for identifying the content of images.

Lots of real-world uses:
▶ Object detection (driving, flying, satellite imagery, etc.)
▶ Facial recognition (phone ID, funny app backgrounds)
▶ Medical image analysis
▶ Reading and classifying handwritten documents

A CNN could be used to answer, “Which emotion is being shown here?”

CNNs Inspired by the Visual Cortex

What is a Convolution?

It’s a little matrix that slides over
an image, multiplies each value
underneath, then adds all the
values together to produce a
single value.

Intuitively, it summarizes the
information from little patches of
the image.

They’ve been used in image
processing for a long time. This
one detects vertical edges.

Convolution in Real Time

Lots of nice convolution GIFs out there — they really help with
visualizing the process.

For example, we’ll check out:
commons.wikimedia.org/wiki/File:2D Convolution Animation.gif

https://commons.wikimedia.org/wiki/File:2D_Convolution_Animation.gif

CNN Example
The CNN example from Katie Gates’ and my deep learning primer

for psychologists.

https://psycnet.apa.org/record/2021-31499-001
https://psycnet.apa.org/record/2021-31499-001

Learning Outcomes Checkpoint

▶ We’ve just discussed convolutional neural networks, which
are used to model images.

▶ Our final learning outcome for this lecture is to briefly
discuss tuning deep learning model hyperparameters and
model comparison.

Comparing Fitted Models
In machine learning, key goal is ensuring models perform well on new data —
i.e., models generalize. Usually assess using holdout sets or cross-validation.

Picking the Best

Often multiple models are fitted and compared.

The model with the best test set/cross-validation loss or
performance metric is chosen.

In deep learning, it’s a good idea to compare results across a few
trials (e.g., 5–10) to ensure ranking is consistent across random
starts.

Deep Learning Model Hyperparameters

Hyperparameters are parameters whose values are set by the user
rather than estimated from the data.

Deep learning models have:
▶ the learning rate (most important);
▶ the mini-batch size;
▶ the number, sizes, and types of the hidden layers;
▶ the activation functions.

What else?

Regularization for Deep Learning

Neural networks are extremely flexible. So it’s often important in
practice to regularize to reduce overfitting.

There are a ton of neural net regularization methods. We’ll just
discuss a few here.

Weight Decay

Adds a penalty term to the loss to shrink the neural net weights.

Need to tune penalty parameter λ.

Dropout

Randomly masks or “drops out” some hidden layer values.

Need to tune proportion of dropout in each layer.

Early Stopping
Fitting is terminated when the cost starts to increase on a holdout
set.

Actually, not much tuning here — but do need to decide what
“increase” means.

How to Tune
Usually we pick a range of plausible values for each
hyperparameter, then try each combination and compare the fitted
models’ performance — called grid search.
▶ E.g., if the learning rate ε ∈ {0.1, 0.01} and the batch size

B ∈ {100, 500}, we would fit four models for each possible
combination

Alternately, can randomly sample combinations to make tuning
faster — called random search.

How to Tune Better

There are more advanced hyperparameter tuning approaches.

An approach I’ve found to work well is Bayesian optimization,
which predicts the best combination using a Gaussian process.

It’s beyond the scope here, but if you’re interested, check out the
Supplemental Materials as well as the Ax Python package.

https://ax.dev/

Learning Outcomes Checkpoint

Final checkpoint of the day!

▶ We’ve briefly discuss tuning deep learning model
hyperparameters and model comparison.

Any questions before coding?

